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Abstract

Detection and diagnosis of early and subclinical stages of Alzheimer’s Disease (AD) play an

essential role in the implementation of intervention and prevention strategies. Neuroimaging

techniques predominantly provide insight into anatomic structure changes associated with

AD. Deep learning methods have been extensively applied towards creating and evaluating

models capable of differentiating between cognitively unimpaired, patients with Mild Cogni-

tive Impairment (MCI) and AD dementia. Several published approaches apply information

fusion techniques, providing ways of combining several input sources in the medical

domain, which contributes to knowledge of broader and enriched quality. The aim of this

paper is to fuse sociodemographic data such as age, marital status, education and gender,

and genetic data (presence of an apolipoprotein E (APOE)-ε4 allele) with Magnetic Reso-

nance Imaging (MRI) scans. This enables enriched multi-modal features, that adequately

represent the MRI scan visually and is adopted for creating and modeling classification sys-

tems capable of detecting amnestic MCI (aMCI). To fully utilize the potential of deep convo-

lutional neural networks, two extra color layers denoting contrast intensified and blurred

image adaptations are virtually augmented to each MRI scan, completing the Red-Green-

Blue (RGB) color channels. Deep convolutional activation features (DeCAF) are extracted

from the average pooling layer of the deep learning system Inception_v3. These features

from the fused MRI scans are used as visual representation for the Long Short-Term Mem-

ory (LSTM) based Recurrent Neural Network (RNN) classification model. The proposed

approach is evaluated on a sub-study containing 120 participants (aMCI = 61 and cogni-

tively unimpaired = 59) of the Heinz Nixdorf Recall (HNR) Study with a baseline model
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accuracy of 76%. Further evaluation was conducted on the ADNI Phase 1 dataset with 624

participants (aMCI = 397 and cognitively unimpaired = 227) with a baseline model accuracy

of 66.27%. Experimental results show that the proposed approach achieves 90% accuracy

and 0.90 F1-Score at classification of aMCI vs. cognitively unimpaired participants on the

HNR Study dataset, and 77% accuracy and 0.83 F1-Score on the ADNI dataset.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that causes behavioral

changes and deterioration of memory and other cognitive domains [1]. Because there is

no causal treatment for AD dementia, identifying early stages of the disease and preclinical

markers will help to implement intervention and prevention strategies [2]. Mild cognitive

impairment (MCI) is a clinical entity that describes the stage between cognitive changes of

normal aging and dementia [3, 4]. The amnestic MCI (aMCI) subtype has a high probability of

progressing to AD dementia [2]. Robust and reliable systems for early aMCI classification that

aid doctors to identify high risk individuals are needed.

Individuals with aMCI have a higher risk to develop AD dementia, but some individuals

also revert to normal or stay stable without reaching the AD dementia stage [5]. Thus, it would

be beneficial to implement an additional classification system for progression that does not

need any invasive biomarker assessments (like beta-amyloid or tau in the cerebrospinal fluid).

Magnetic resonance imaging (MRI) techniques offer a broad visual representation, that can be

adopted for this purpose. For an effective classification of images, the selection and combina-

tion of adequate features, and labeled training data is crucial. The more knowledge present,

the more enriched image representations are available. The selection and combination of fea-

tures for an adequate representation of the images is essential for creating effective classifica-

tion systems. Several research explorations using multi-modal representations and aiming to

sufficiently represent biomedical and medical images achieve higher prediction accuracies. In

Codella et al. [6], automated medical image modality recognition was achieved by fusing visual

and text information. Valavanis et al. [7] and Pelka et al. [8] adopted a combination of visual

representation with text information extracted from captions to classify and predict the image

modality at the ImageCLEF2016 Medical Task [9].

Deep learning techniques [10] have improved prediction accuracies in object detection

[11], speech recognition [12] and in medical imaging [13, 14]. These positive results are attrib-

utable to large amounts of natural scene data sets available, as they provide adequate feature

representation for transfer learning [15]. However, a major concern in the medical domain is

the insufficient number of large datasets such as ChestX-Ray8 database [16] and the Open-

fMRI project [17]. This is due to the fact that detailed annotation of medical images is time-

consuming, prone to errors and restricted by data protection rules. Therefore, image classifica-

tion tasks in the medical domain are challenging, regarding sufficient and efficient feature

selection. On the other hand, there are several input sources in the medical domain. These can

be fused together, such as combining MRI with patient clinical information or several imaging

modalities, as well as radiology reports with images, to obtain better medical image under-

standing. There is no restriction to the usage of the fused data, as it can be applied to several

challenging medical tasks.
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Related work

Successful research work regarding the prediction of the conversion from mild cognitive

impairment to Alzheimer’s disease have been reported using multimodal features from sev-

eral input sources. Spasov et al. [18] proposed a MCI to AD conversion and AD vs. healthy

controls detection using deep learning techniques to combine structural MRIs with demo-

graphic, neuropsychological and APOE-ε4. The proposed model is based on dual learning

and an ad hoc layer for 3D separable convolutions. Generative methods that detect occuring

patterns were applied by Yang et al. [19] to characterize Alzheimer’s Disease using image

and categorical genetic features, based on supervised topic modeling. In Lee et al. [20], a

multimodal recurrent neural network using demographic information, longitudinal cogni-

tive performance and cross-sectional neuroimaging biomarker was adopted for MCI to AD

conversion prediction. The experimented objective was a sequential data classification and

several Gated Recurrent Unit (GRU) for each data modality were trained and adopted for

MCI prediction.

Several prior works Zhang et al. [21], Liu et al. [22], Samper-González et al. [23] and Huang

et al. [24] apply machine learning and neuroimaging to distinguish between cognitively unim-

paired controls and patients with MCI and AD. A traditional way is to first extract features like

volume, cortical thickness or gray matter volume from neuroimaging and then perform fea-

ture selection, as well as dimension and noise reduction. Finally, a feature-based classification

is then conducted. This approach has been presented in multiple research work including

Bloch et al. [25] and Sørensen et al. [26]. Choosing the best feature combination for several

medical tasks can be tedious, time-consuming and challenging. As automatic feature-extrac-

tion from 3D-images is often combined with high computational effort, Liu et al. [22] and

Huang et al. [24] use deep learning methods to extract information directly from the MRI

scans, which improves the overall classification results.

Multimodal approaches have shown to obtain encouraging results in other domains as well,

such as biomedical image analysis. These attempts combine image and text representation into

one vector, with which the image classifiers are trained. Adopting this method, the connec-

tions in low-level features can be exploited. For the ImageCLEF 2015 Medical Tasks [27], late

fusion methods were applied in Pelka et al. [28] to fuse decision values from a multiclass linear

kernel Support Vector Machine (SVM) [29] and Random Forest [30] classifiers to predict the

modality of subfigures extracted from the PubMed Central (PMC) Open Access Subset [31].

In [32], automatic generated semantic information from Unified Modeling Language System

(UMLS) [33] concepts were combined with Bag-of-Keypoints representations [34] computed

with Dense (dSIFT) [35] features and applyed for predicting image modality, body region

examined, orientation of the image and biological system investigated. This approach was fur-

ther explored in Pelka et al. [36] by using Deep convolutional activation features (DeCAF)

[37] to obtain an optimized medical image body region classification.

Inspired by this and earlier work on body region detection in Pelka et al. [38], we propose

an approach that brands encoded sociodemographic and genetic data onto MRI 2D slices to

obtain an enhanced image representation, to reduce computational load.

Due to the limited number of annotated medical images available, we propose to learn aug-

mented deep convolutional activation features in a recurrent neural network framework for an

optimized aMCI classification. These features are extracted with the Inception_v3 [39] deep

learning model, thereby exploring the potential of Transfer Learning [15] from pre-trained

ImageNet models. Promising results using deep convolutional activation features (DeCAF)

have been presented by various work, including Gong et al. [40], Yosinski et al. [41], Sinha

et al. [42] and Razavian et al. [43]. Our contributions in this paper are:
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• A novel fusion method for branding MRI scans with patient sociodemographic and genetic

data.

• Enhancement of MRI scans by augmenting two extra color layers.

• Transfer Learning is utilized for creating deep convolutional activation features.

• Long short-term memory (LSTM) based Recurrent Neural Networks (RNN) are utilized for

modeling approaches

• Evaluation on sub sample of the Heinz Nixdorf Recall (HNR, Risk Factors, Evaluation of

Coronary Calcium and Lifestyle) Study with 1.5T-weighted MRI scans.

• Further evaluation was conducted on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) Phase 1 dataset with 1.5T-weighted MRI scans.

Materials and methods

Study population

The proposed data fusion techniques were evaluated using a sub sample of 61 participants

with aMCI and 59 cognitively unimpaired controls derived from the Heinz Nixdorf Recall

(HNR) Study [44] and further evaluated on the ADNI Phase 1 dataset, an open-accessible

state-of-the-art ADNI Phase 1 dataset distributed by the Alzheimer’s Disease Neuroimaging

Initiative (https://adni.loni.usc.edu) [45].

The HNR Study is a population-based prospective cohort study with subjects randomly

selected from mandatory lists of residence. Its major aim is to evaluate the predictive value of

coronary artery calcification using electron-beam computed tomography for myocardial

infarction and cardiac death in comparison to other cardiovascular risk factors. Details of the

study methods have been previously described in detail [44]. Ethics Statement for the use of

the HNR study population from IRB of University Hospital Essen, Essen, Germany dated

2009-10-23 and 2012-06-06 to Prof. Dr. C. Weimar, registration number: 06-3116 is available

and was approved by the university review board. All participants provided written informed

consent.

Briefly, 4814 participants 45 to 75 years of age were enrolled between 2000 and 2003 in the

Ruhr area in Germany. Five years after baseline (2005-2008, n = 4,145), the first follow-up of

the HNR Study was conducted and included a short cognitive assessment (for details see [46]).

This cognitive assessment was evaluated and validated in a sub-study [46]. The longitudinal

sub-study comprises a more comprehensive neuropsychological assessment (see below), a

neurological exam assessed by a certified neurologist and MRI volumetric data [1, 46]. Partici-

pants with dementia (n = 7), severe depression (ADAS depression subscale score >4, n = 13),

Parkinson disease (n = 5), mental retardation (n = 2), severe alcohol consumption (for

women:>20 g/day; for men: >40 g/day, n = 2), known brain cancer (n = 1), severe problems

with the German language (foreign persons, n = 9) and severe sensory impairment (n = 2)

leading to invalid cognitive testing were excluded from the sub-study.

ADNI is a consortium of several medical centers and universities in the United States and

Canada, and was established to create biomarker procedures and standardized imaging tech-

niques in subjects with MCI, subjects with AD, and normal subjects [45]. Led by Principal

Investigator Michael W. Weiner, MD., ADNI was launched in 2003 as a public-private part-

nership. One of the major aims of this initiative was to develop an accessible data repository

that contains serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment. Using this
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repository, modeling approaches capable off measuring the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD) can implemented and evaluated. For

up-to-date information, see http://www.adni-info.org and details about the ethics statement of

the ADNI study population can be found at https://adni.loni.usc.edu.

All enrolled subjects in the ADNI Phase 1 dataset were between 55 and 90 years of age,

could either speak Spanish or English and were classified as normal controls, subjects with

MCI or subjects with mild AD [45]. Participants with no memory complaints were classified

as normal subjects. The Clinical Dementia Rating (CDR) for normal, MCI, and AD subjects

were 0, 0.5 and> 0.5, respectively [45]. All classified subjects had a study partner with over 10

hours contact per week, adequate visual and auditory perceptiveness, at least 6 years of educa-

tion or similar work biography, and general good health, a geriatric depression score of>= 4

[45]. Female participants had to be either 2 years past child bearing potential or sterile. Further

information on subject selection is detailed in Petersen et al. [45].

Evaluation of cognitive status and aMCI diagnosis

Detailed information on the neuropsychological assessment to identify participants with MCI

of the HNR Study has been described in Dlugal et al. [47]. Briefly, the standardized neuropsy-

chological examination was conducted by a neuropsychologist using the following tests:

1. The Alzheimer’s Disease Assessment Scale (ADAS) [48]

2. Number Connection Test from the NAI [49]

3. Verbal Fluency Test [50] (two subtests with a formal lexical category and two subtests with

a semantic category)

4. Instrumental Activities of Daily Living scale to assess disability [49]

Using these tests, the following areas of neuropsychological functioning were covered: ver-

bal memory, orientation/praxis, information processing speed, executive functions and verbal

abilities. A cognitive domain was rated as impaired if the performance was more than 1 stan-

dard deviation (SD) below the age adjusted mean.

Because the MCI due to AD criteria by Albert et al. [51] were not yet published when the

sub-study started, the Winblad et al. [52] MCI criteria were used to diagnose aMCI. The 61

aMCI participants had to meet all of the following aMCI criteria:

1. cognitive impairment in the verbal memory domain

2. subjective cognitive decline

3. normal functional abilities and daily activities

4. no dementia diagnosis

The final decision about aMCI diagnosis was ultimately made by consensus agreement

between the examining neurologist and neuropsychologist taking into account the medical

history related to cognitive functioning, duration of such symptoms, the history of other medi-

cal illnesses and current treatment for each participant. The diagnosis aMCI is equivalent to

the diagnosis of MCI due to AD without biomarker information representing the core clinical

criteria as proposed by Albert et al. [51]. Participants who did not show cognitive impairment

in any domain were considered as cognitively unimpaired and categorized as “Controls”.

For the ADNI Phase 1 Population, the Assessment is detailed in Petersen et al. [45].
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Covariates

To fuse several input sources in the medical domain, MRI combined with the following socio-

demographic characteristics were used: age, gender, education and marital status. Education

was classified by the International Standard Classification of education (ISCED) as total years

of formal education, combing school and vocational training [53]. For the HNR Study, the

continuous education variable was grouped into three categories, with the highest category of

14 and more years of education and the lowest category with 10 and fewer years. Participants

were asked about their marital status using the following categories (married, widowed,

divorced and single). For the ADNI Phase 1 dataset, education was based on the Logical Mem-

ory II subscale of the Wechsler Memory Scale-Revised [54] and on subject classification. For

normal subjects, the cutoff scores were >= 9 for 16 years of education, >= 5 for 8 to 15 years

of education and>= 3 for 0 to 7 years. For subjects with MCI and subjects with AD, the cutoff

scores were <= 8 for 16 years of education, <= 4 for 8 to 15 years of education and <= 2 for 0

to 7 years.

Furthermore, genetic information was adopted for the proposed fusion approach prior to

training the classification model. The apolipoprotein E (APOE)-ε4 allele is the main genetic

risk factor for sporadic AD [55]. For the HNR Study, Cardio-MetaboChip BeadArrays were

used for genotyping of two single-nucleotide polymorphisms (rs7412 and rs429358) to dis-

criminate between the APOE alleles ε2, ε3, and ε4. Participants defined as APOE-ε4 positive

had at least one allele 4 (2/4, 3/4, 4/4). All other participants were defined as APOE-ε4 nega-

tive. Information regarding APOE-ε on the ADNI Phase 1 dataset is detailed in Petersen et al.
[45].

Dataset

Table 1 shows the distribution of the sociodemographic data variables age, gender, education,

marital status and genetic data variable APOE-ε4 genotype (defined as “Participant Data”) for

aMCI and cognitively unimpaired controls on the applied sub sample. All participants were

scanned with a single 1.5T MR scanner (Magneton Avanto, Siemens Healthcare, Erlangen)

with 60cm bore diameter, 200T/m/s slew rate, 160cm length and 40/40/45 mT/m gradient

strength [1].

To additionally examine the proposed approach, the open-accessible state-of-the-art ADNI

Phase 1 dataset was used, which is distributed by the Alzheimer’s Disease Neuroimaging Initia-

tive (https://adni.loni.usc.edu) [45]. This initiative is a consortium of several medical centers

and universities in the United States and Canada, and was established to create biomarker pro-

cedures and standardized imaging techniques in subjects with MCI, subjects with AD, and

normal subjects [45]. Led by Principal Investigator Michael W. Weiner, MD., ADNI was

launched in 2003 as a public-private partnership. One of the major aims of this initiative was

to develop an accessible data repository that contains serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment. Using this repository, modeling approaches capable off mea-

suring the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD) can be implemented and evaluated. For up-to-date information, see http://www.adni-

info.org. Table 2 shows the distribution of the participant data variables used for this evalua-

tion from the ADNI Phase 1 dataset.

Data fusion

The presented work proposes an approach to fuse sociodemographic data and APOE-ε4 with

MRI scans, enabling enriched multi-modal image representation. This is fundamental for
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Table 1. HNR Study explorative analysis. Summary statistics computed on the sub-study of the HNR Study adopted for the proposed fusion approach. Participant Data

denotes the sociodemographic data (age, marital status, education, gender) and genetic data (APOE-ε4). The total number of particpants is n = 120.

Participant Data aMCI Controls Sum

ageyr 46–55 1 (50.00%) 1 (50.00%) 2 (1.67%)

56–65 15 (60.00%) 10 (40.00%) 25 (20.83%)

66–75 31 (48.44%) 33 (51.56%) 64 (53.33%)

76–85 14 (48.28%) 15 (51.72%) 29 (21.17%)

gender Female 24 (50.00%) 24 (50.00%) 48 (40.00%)

Male 37 (51.39%) 35 (48.61%) 72 (60.00%)

educationyr <= 10 15 (55.56%) 12 (44.44%) 27 (22.50%)

11–13 37 (53.62%) 32 (46.38%) 69 (57.50%)

>= 14 9 (37.50%) 15 (62.50%) 24 (20.00%)

marital status Married 49 (51.04%) 47 (48.96%) 96 (80.00%)

Widowed 8 (57.14%) 7 (42.86%) 14 (11.67%)

Divorced 4 (57.14%) 3 (42.86%) 7 (5.83%)

Single 0 (0%) 2 (100%) 2 (1.67%)

APOE-ε4 Positive 21 (63.64%) 12 (36.36%) 33 (27.50%)

Negative 40 (45.98%) 47 (54.02%) 87 (72.50%)

Sum 61 (50.83%) 59 (49.17%) 120 (100.00%)

aMCI = Amnestic Mild cognitive impairment

Controls = Cognitively unimpaired

https://doi.org/10.1371/journal.pone.0236868.t001

Table 2. ADNI Phase 1 dataset explorative analysis. Summary statistics computed on ADNI Phase 1 dataset adopted for the proposed fusion approach. Participant Data

denotes the sociodemographic data (age, marital status, education, gender) and genetic data (APOE-ε4). The total number of particpants is n = 624.

Participant Data aMCI Controls Sum

ageyr 46–55 3 (100.00%) 0 (00.00%) 2 (00.48%)

56–65 52 (89.66%) 6 (10.34%) 58 (09.29%)

66–75 158 (58.52%) 112 (41.48%) 270 (43.27%)

76–90 184 (62.80%) 109 (37.20%) 293 (46.96%)

gender Female 141 (56.40%) 109 (43.60%) 250 (40.01%)

Male 256 (68.45%) 118 (31.55%) 374 (59.94%)

educationyr <= 10 20 (66.67%) 10 (33.33%) 30 (04.80%)

11–13 79 (72.48%) 30 (27.52%) 109 (17.46%)

>= 14 298 (61.44%) 187 (38.56%) 485 (77.72%)

marital status Married 318 (67.23%) 155 (32.77%) 473 (75.80%)

Widowed 48 (55.17%) 39 (44.83%) 87 (13.94%)

Divorced 25 (59.52%) 17 (40.48%) 42 (06.73%)

Single 6 (27.27%) 16 (72.72%) 22 (03.53%)

APOE-ε4 Positive 185 (52.56%) 167 (47.44%) 352 (56.41%)

Negative 212 (77.94%) 60 (22.06%) 272 (43.59%)

Sum 397 (63.62%) 227 (36.38%) 624 (100.00%)

aMCI = Amnestic Mild cognitive impairment

Controls = Cognitively unimpaired

https://doi.org/10.1371/journal.pone.0236868.t002
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image classification and retrieval purposes, and is not limited to computer-aided decision sys-

tems for clinical diagnoses. Positive results have been presented for 2D Images in Pelka et al.
[38], where automatic generated keywords were incorporated onto x-ray and biomedical

images. Several branding options such numerical, grayscale and ordinal values were experi-

mented in Pelka et al., and the binary branding option proved to obtain best results [38]. This

approach is further investigated in this work by encoding sociodemographic data and APOE-

ε4 onto 2D slices of an MRI scan for a specific clinical question, and is denoted as “Branded“.

The limitation of the usage of 2D slices instead of the 3D MRI scans will be experimented in

further work, as positive results have been reported in the overview survey of deep learning

techniques for MRI [56].

Fusing information from multiple input domain, aims at increasing consolidated represen-

tations of the participants. For each of the variables that are listed in sociodemographic data

and APOE-ε4, possible values are grouped. Hence, 2 to 4 groups were obtained per variable.

To incorporate these groups onto the MRI scans, generated markers displayed in Fig 1 are cre-

ated as a variable group.

Finally, each 2D slice (image size [224x224]) is branded by markers denoting the participant

data values, which are listed in Fig 1. Each participant’s information is fused as a [10x20] pixel

marker at the pixel position (0, 10) to (10, 150). A space [10x5] is kept between each marker

position, as shown in Fig 2 and the complete implementation was done in python and will be

Fig 1. Marker for branding. Generated markers applied for fusing sociodemographic data and APOE-ε4 data with 2D

slices of MRI scans. Each marker denotes the different values for clinical data variables. Participant Data denote the

sociodemographic data variables (age, marital status, education, gender) and genetic data variable (APOE-ε4). The

markers were randomly distributed amongst values per variable.

https://doi.org/10.1371/journal.pone.0236868.g001
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available after acceptance. For the HNR Study dataset, all DICOM scans were converted to

png-files and resized to [224x224], prior to branding and image enhancement. Similarly, for

the ADNI Phase 1 dataset, the nifti scans were converted to png-files. The png-files from both

datasets are 8-bit.

Image enhancement

For image recognition tasks, convolutional neural networks trained on large datasets produce

favorable results. Considering the number of images in the applied data set, the adaptation of

Transfer Learning with pre-trained neural network Inception-v3 [39] was chosen. This pre-

trained deep convolutional neural network models were designed to extract among other fea-

tures, color information in three separate channels (RGB) from the images [57, 58]. However,

the MRI scan are gray-scale and have a single color channel with values 0,. . .,255. To fully uti-

lize the capabilities of deep convolutional neural networks, two extra color layers are aug-

mented to each MRI, completing the Red-Green-Blue (RGB) channels. Color input

enhancement have aided to substantially improve prediction accuracy from 86% to 92% for

the detection of malignancy in digital mammography images [59] and approximately 3% for

structuring 2D x-rays according to imaging technique modality, anatomical region and biolog-

ical systems examined, which is applied for medical image retrieval [60].

The first extra layer was obtained by using the image processing technique: Contrast Lim-

ited Adaptive Historization Equation (CLAHE) [61]. CLAHE is a contrast enhancement

method, modified from the Adaptive Histogram Equation (AHE). It is designed to be broadly

Fig 2. Branding approach. Proposed branding approach of fusing sociodemographic data (age, education, marital status and gender) and genetic data (APOE-ε4)

with 2D slices of an MRI scan. The marker positions and sizes of each clinical data variable branded are displayed. The 2D slice was randomly selected from an

MRI scan of the sub-study from the HNR Study.

https://doi.org/10.1371/journal.pone.0236868.g002
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applicable and has demonstrated effectiveness, especially for medical images [62]. Fig 3 dis-

plays the original 2D slice of a MRI scan with contrast enhanced image adaption after CLAHE

was performed. The CLAHE output image was obtained using the following parameters:

• Desired histogram shape: Uniform

• Distribution parameter: 0.4

• Number of histogram bins: 256

• Contrast enhancement limit: 0.01

• Range of output data: Full

• Number of tiles: [8, 8]

The second layer was generated by applying the Non-Local Means (NL-MEANS) prepro-

cessing method. This is a digital image denoising method, based on a non-local averaging of

all present pixels in an image [63]. The effect of applying NL-MEANS to a randomly chosen

2D slice is shown in Fig 4.

The NL-MEANS output images were obtained using the following parameters:

• Filter strength: 0.05

• Kernel ratio: 4

• Window ratio: 4

Visual representation

For visual representation, deep convolutional activation features (DeCAF) [37] were chosen.

DeCAF features are extracted from the average pooling layer of the deep learning system

Fig 3. CLAHE image preprocessing. 2D slice from a MRI scan before and after applying the Contrast Limited Adaptive Histogram Equation (CLAHE)

preprocessing method. The 2D slice was randomly selected from an MRI scan of the sub-study from the HNR Study.

https://doi.org/10.1371/journal.pone.0236868.g003

PLOS ONE MRI-based detection of amnestic mild cognitive impairment using sociodemographic data, APOE and deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0236868 September 25, 2020 10 / 24

https://doi.org/10.1371/journal.pone.0236868.g003
https://doi.org/10.1371/journal.pone.0236868


Inception-v3 [39], which is pre-trained on the ImageNet [64]. For comparison purposes, addi-

tional DeCAF features were extracted using a medical context pre-trained DenseNet-121

model [65] on the ChestX-Ray8 database [16]. The activation features were extracted using the

neural network API Keras 2.2.0 [66]. The default values for the Inception-v3 base model was

used. For the 3D MRI scans, the DeCAF visual representations were extracted 2D slice-wise

with a vector size of 2048. Every second 2D slice between [8 − 165] was considered. Hence,

each 3D MRI scan was represented with 80 2D slices and has a vector size of 163, 840 deep

convolutional activation features.

Classification

As aMCI vs control classification model, LSTM based RNNs was adopted. RNNs are mostly

used for modeling long-range dependencies, where future events are predicted with past

events [67] and has proven to be successful for several research topics such as medical question

and answering [68]. The effective characteristic of LSTM is the ability to accumulate state

information, as information of every new input is accumulated onto previous input [69, 70].

As each 2D slice of a MRI scan contains dependencies between predecessor and successor

slices, we choose the LSTM architecture for modeling the classifier. The applied LSTM net-

work contains the following keras layers:

• LSTM

• Output shape: (None, 2048)

• Input shape: (80, 2048)

• Dropout = 0.5

• Dense

Fig 4. NL-MEANS image preprocessing. 2D slice from a MRI scan before and after applying the Non-Local Means (NL-MEANS) preprocessing method. The 2D

slice was randomly selected from an MRI scan of the sub-study from the HNR Study.

https://doi.org/10.1371/journal.pone.0236868.g004
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• Output shape: (None, 512)

• Activation: Sigmoid [1/(1 + exp(−x))]

• Dropout

• Output shape: (None, 512)

• Rate: 0.5

• Dense

• Output shape: (None, 2)

• Activation: Softmax

For the approach evaluation, three (3) different inputs were fed into the LSTM network:

1. Original: DeCAF representations extracted from the original MRI scans.

2. Branded: DeCAF representations extracted with the branded and enhanced MRI scans.

3. Wide and Deep [71]: Dot product of features extracted using the original MRI and clinical

data.

The HNR Study dataset consisting of 120 participants was split into a training and test set,

containing 99 participants (aMCI = 51 and controls = 48) and 21 participants (aMCI = 10 and

controls = 11), respectively. Similarly, the ADNI Phase 1 dataset with 624 participants was split

into a training and test with 561 (aMCI = 357 and controls = 204) and 63 (aMCI = 40 and con-

trols = 23), respectively. The test set was independent and not used for training or parameter

optimization. The complete workflow describing the proposed method is displayed in Fig 5.

Results

For the HNR Study datatset, a k = 5-fold cross validation [72] was achieved by splitting the

training set with 99 participants into 5 different partitions. From this, one partition is used as

the validation set (20%) and the remaining 4 partitions (80%) are used for training. This has

Fig 5. Complete proposed approach. Complete workflow of the proposed approach. Sociodemographic data and APOE-ε4 are fused with MRI scans 2D slice-

wise and further enhanced by augmenting contrast intensified and blurred image adaptions as two extra layer completing the RGB channels. DeCAF

representations are extracted and used as visual representations for training the aMCI vs control classification model.

https://doi.org/10.1371/journal.pone.0236868.g005
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been done for each of the five partitions. For comparison purpose, evaluation metrics using

both DeCAF visual representation are listed. Tables 3 and 4 show the classification rates

obtained on the k-fold cross validation sets. The evaluation rates achieved on the independent

test set with n = 21 participants are listed in Tables 5 and 6. The random split was done class-

wise, to confirm the occurrence of both classes in the k-fold cross validation sets.

Table 3. Cross-validation prediction on HNR Study. Prediction performance of the LSTM classification model using

various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated on the

k = 5-fold cross validation sets from the training set with n = 99 participants of the sub-study from the HNR Study. The

values are the average and standard deviation rates across all k = 5 cross validation sets. Visual representation were

extracted using the ImageNet database [64].

Original Branded Wide and Deep

Specificity 0.64 (± 0.26) 0.80 (± 0.18) 0.64 (± 0.21)

Sensitivity 0.70 (± 0.12) 0.74 (± 0.11) 0.76 (± 0.18))

F1-Score 0.69 (± 0.09) 0.80 (± 0.14) 0.71 (± 0.08))

Accuracy 0.70 (± 0.16) 0.77 (± 0.07) 0.70 (± 0.07)

https://doi.org/10.1371/journal.pone.0236868.t003

Table 4. Cross-validation prediction on HNR Study. Prediction performance of the LSTM classification model using

various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated on the

k = 5-fold cross validation sets from the training set with n = 99 participants of the sub-study from the HNR Study. The

values are the average and standard deviation rates across all k = 5-fold cross validation sets. Visual representation were

extracted using the ChestX-Ray8 database [16].

Original Branded Wide and Deep

Specificity 0.68 (± 0.13) 0.76 (± 0.11) 0.74 (± 0.27)

Sensitivity 0.70 (± 0.07) 0.72 (± 0.08) 0.68 (± 0.23)

F1-Score 0.70 (± 0.03) 0.74 (± 0.06) 0.70 (± 0.16)

Accuracy 0.69 (± 0.04) 0.74 (± 0.07) 0.71 (± 0.13)

https://doi.org/10.1371/journal.pone.0236868.t004

Table 5. Prediction accuracy on HNR Study test set. Prediction performance of the LSTM classification model using

various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated on the

independent test set with n = 21 participants of the sub-study from the HNR Study. Visual representation were

extracted using the ImageNet database [64].

Original Branded Wide and Deep

Specificity 0.82 0.91 0.64

Sensitivity 0.70 0.90 0.90

F1-Score 0.74 0.90 0.78

Accuracy 0.76 0.90 0.76

https://doi.org/10.1371/journal.pone.0236868.t005

Table 6. Prediction accuracy on HNR Study test set. Prediction performance of the LSTM classification model using

various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated on the

independent test set with n = 21 participants of the sub-study from the HNR Study. Visual representation were

extracted using the ChestX-Ray8 database [16].

Original Branded Wide and Deep

Specificity 0.73 0.91 0.64

Sensitivity 0.90 0.80 1

F1-Score 0.82 0.84 0.83

Accuracy 0.81 0.86 0.81

https://doi.org/10.1371/journal.pone.0236868.t006
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For the ADNI datatset, a k = 5-fold cross validation [72] was achieved by splitting the train-

ing set with 561 participants into 5 different partitions. From this, one partition is used as the

validation set (10%) and the remaining 4 partitions (90%) are used for training. This has been

done for each of the five partitions. Tables 7 and 8 show the classification rates obtained on the

k-fold cross validation sets. The evaluation rates achieved on the independent test set with

n = 63 participants are listed in Tables 9 and 10. The random split was done class-wise, to con-

firm the occurrence of both classes in the k-fold cross validation sets.

Fig 6 displays the Gradient-weighted Class Activation Mapping (Grad-CAM) [73] of the

adopted LSTM model. The Grad-CAM shows visual explanations of the decisions made by

the LSTM models, highlighting the important regions of the MRI scans used to distinguish

between aMCI and controls. An ablation study was conducted prior to branding by omitting

each clinical data variable. This ablation study gives insight regarding the information gain by

applying sociodemographic data and APOE-ε4, which is listed in Tables 11 and 12 for the

HNR Study dataset and in Tables 13 and 14 for the ADNI Phase 1 dataset.

Table 7. Cross-validation prediction on ADNI Phase 1 dataset. Prediction performance of the LSTM classification

model using various image input types. The highlighted values are the best per evaluation metric. Evaluation was calcu-

lated on the k = 5-fold cross validation sets from the training set with n = 561 participants of the ADNI Phase 1 dataset.

The values are the average and standard deviation rates across all k = 5-fold cross validation sets. Visual representation

were extracted using the ImageNet database [64].

Original Branded Wide and Deep

Specificity 0.44 (± 0.08) 0.54 (± 0.11) 0.47 (± 0.09)

Sensitivity 0.82 (± 0.06) 0.83 (± 0.12) 0.81 (± 0.03)

F1-Score 0.79 (± 0.04) 0.81 (± 0.07) 0.80 (± 0.03))

Accuracy 0.69 (± 0.06) 0.74 (± 0.09) 0.71 (± 0.04)

https://doi.org/10.1371/journal.pone.0236868.t007

Table 8. Cross-validation prediction on ADNI Phase 1 dataset. Prediction performance of the LSTM classification

model using various image input types. The highlighted values are the best per evaluation metric. Evaluation was calcu-

lated on the k = 5-fold cross validation sets from the training set with n = 561 participants of the ADNI Phase 1 dataset.

The values are the average and standard deviation rates across all k = 5-fold cross validation sets. Visual representation

were extracted using the ChestX-Ray8 database [16].

Original Branded Wide and Deep

Specificity 0.41 (± 0.08) 0.57 (± 0.09) 0.39 (± 0.05)

Sensitivity 0.67 (± 0.04) 0.71 (± 0.09) 0.70 (± 0.03)

F1-Score 0.67 (± 0.02) 0.72 (± 0.06) 0.68 (± 0.00))

Accuracy 0.58 (± 0.03) 0.64 (± 0.09) 0.59 (± 0.01)

https://doi.org/10.1371/journal.pone.0236868.t008

Table 9. Prediction accuracy on ADNI Phase 1 test set. Prediction performance of the LSTM classification model

using various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated

on the independent test set with n = 63 participants of the ADNI Phase 1 dataset. Visual representation were extracted

using the ImageNet database [64].

Original Branded Wide and Deep

Specificity 0.48 0.65 0.52

Sensitivity 0.85 0.85 0.77

F1-Score 0.78 0.83 0.79

Accuracy 0.66 0.77 0.71

https://doi.org/10.1371/journal.pone.0236868.t009
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Discussion

The proposed branding technique to obtain fused image representations of MRI scans with

the sociodemographic data age, gender, education and marital status and APOE-ε4 genotype

outperformed other inputs in all evaluation metrics in the independent test set. This could be

shown for both the HNR Study and ADNI Phase 1 datasets.

Table 10. Prediction accuracy on ADNI Phase 1 test set. Prediction performance of the LSTM classification model

using various image input types. The highlighted values are the best per evaluation metric. Evaluation was calculated

on the independent test set with n = 63 participants of the ADNI Phase 1 dataset. Visual representation were extracted

using the ChestX-Ray8 database [16].

Original Branded Wide and Deep

Specificity 0.43 0.57 0.48

Sensitivity 0.59 0.77 0.70

F1-Score 0.61 0.72 0.69

Accuracy 0.53 0.76 0.61

https://doi.org/10.1371/journal.pone.0236868.t010

Fig 6. Classification activation mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) image, highlighting important image regions

used for distinguishing between aMCI and controls by the classification models. The 2D slice was randomly chosen from the sub-study of the HNR

Study.

https://doi.org/10.1371/journal.pone.0236868.g006

Table 11. Ablation study on HNR Study test set. Prediction performance of the LSTM classification model on the ablation study. Each sociodemographic data variable,

as well as the genetic data APOE-ε4 was subsequently omitted, prior to the MRI branding. Evaluation was calculated on the independent test set with n = 21 participants of

the sub-study from the HNR Study. Visual representation were extracted using the ImageNet database [64].

Specificity Sensitivity F1-Score Accuracy

All data variables 0.91 0.90 0.90 0.90

Without age 0.82 0.90 0.84 0.86

Without APOE-ε4 0.91 0.70 0.78 0.81

Without gender 0.91 0.80 0.86 0.86

Without education 0.82 0.80 0.80 0.81

Without marital status 0.91 0.80 0.84 0.86

https://doi.org/10.1371/journal.pone.0236868.t011
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For the k-fold cross validation samples with n = 99 participants on the HNR Study dataset,

the Wide and Deep input method achieved a higher sensitivity rate. However, for the specific-

ity, precision and overall accuracy rate, the proposed method obtains better scores. The origi-

nal image as input obtains better specificity, precision and accuracy rates on the test set than

the Wide and Deep input method. Analyzing the ablation study with DeCAF representation

extracted from Inception-v3 [39], the following findings can be taken:

• gender does not affect the overall specificity

• education has the greatest impact on all four evaluation values

• APOE-ε4 does not affect specificity

• marital status does not affect specificity

Table 12. Ablation study on HNR Study test set. Prediction performance of the LSTM classification model on the ablation study. Each sociodemographic data variable,

as well as the genetic data APOE-ε4 was subsequently omitted, prior to the MRI branding. Evaluation was calculated on the independent test set with n = 21 participants of

the sub-study from the HNR Study. Visual representation were extracted using the ChestX-Ray8 database [16].

Specificity Sensitivity F1-Score Accuracy

All data variables 0.91 0.80 0.84 0.86

Without age 0.74 0.80 0.78 0.76

Without APOE-ε4 0.82 0.80 0.86 0.86

Without gender 0.73 0.70 0.82 0.81

Without education 0.74 0.70 0.78 0.76

Without marital status 0.77 0.80 0.78 0.76

https://doi.org/10.1371/journal.pone.0236868.t012

Table 13. Ablation study on ADNI Phase 1 test set. Prediction performance of the LSTM classification model on the ablation study. Each sociodemographic data variable,

as well as the genetic data APOE-ε4 was subsequently omitted, prior to the MRI branding. Evaluation was calculated on the independent test set with n = 63 participants of

the ADNI Phase 1 dataset. Visual representation were extracted using the ImageNet database [64].

Specificity Sensitivity F1-Score Accuracy

All data variables 0.65 0.85 0.83 0.77

Without age 0.57 0.72 0.73 0.63

Without APOE-ε4 0.39 0.80 0.74 0.65

Without gender 0.61 0.72 0.74 0.68

Without education 0.52 0.72 0.73 0.65

Without marital status 0.57 0.75 0.75 0.68

https://doi.org/10.1371/journal.pone.0236868.t013

Table 14. Ablation study on ADNI Phase 1 test set. Prediction performance of the LSTM classification model on the ablation study. Each sociodemographic data variable,

as well as the genetic data APOE-ε4 was subsequently omitted, prior to the MRI branding. Evaluation was calculated on the independent test set with n = 63 participants of

the ADNI Phase 1 dataset. Visual representation were extracted using the ChestX-Ray8 database [16].

Specificity Sensitivity F1-Score Accuracy

All data variables 0.57 0.77 0.72 0.76

Without age 0.50 0.66 0.71 0.60

Without APOE-ε4 0.58 0.69 0.68 0.62

Without gender 0.52 0.70 0.66 0.61

Without education 0.49 0.71 0.70 0.64

Without marital status 0.54 0.72 0.72 0.65

https://doi.org/10.1371/journal.pone.0236868.t014
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• age does not affect sensitivity

• Removing the genetic variable APOE-ε4 leeds to the highest decrease in the F1-Score

• All applied sociodemographic data and APOE-ε4 have an impact on the overall F1-Score

Analyzing the ablation study with DeCAF representation extracted with ChestX-Ray8 [16],

the following findings can be taken:

• Age, education and marital status do not affect the overall sensitivity

• Removing age and education leads to the highest decrease in specificity

• Removing age and education leads to the highest decrease in the overall accuracy

• Removing age leeds to the highest decrease in the F1-Score

• All applied sociodemographic data and APOE-ε4 have an impact on the overall F1-Score

For the k-fold cross validation samples with n = 561 participants on the ADNI Phase 1 data-

set, the original input method achieved the same sensitivity rate. However, for the specificity,

precision and overall accuracy rate, the proposed method obtains better scores. The original

image as input obtains better specificity, precision and accuracy rates on the test set than the

Wide and Deep input method. Analyzing the ablation study with DeCAF representation

extracted with Inception-v3 [39], the following findings can be taken:

• gender does not affect the overall specificity

• education has a great impact on all four evaluation values

• Removing APOE-ε4 has the highest decrease on specificity

• Removing age has the highest decrease on the accuracy rate

• All applied sociodemographic data and APOE-ε4 have an impact on all four evaluation

metrics

Analyzing the ablation study with DeCAF representation extracted with ChestX-Ray8 [16],

the following findings can be taken:

• Removing education led to the highest decrease in specificity

• Age and education have a great impact on all four evaluation values

• Removing age has the highest decrease on sensitivity and accuracy rate

• Removing gender has the highest decrease on the F1-Score

• All applied sociodemographic data and APOE-ε4 have an overall impact on all four evalua-

tion metrics

As mentioned earlier, adequate fusion of selected features leads to enriched and consoli-

dated visual representations. We show that combining several data input sources from the

medical domain, proves to be a possible way for tackling challenging medical tasks.

Deep convolutional neural networks incorporate the ability to extract color information

from RGB-images. MRI scans offer important insight into visual representation which can be

applied for automatic structuring, such as classification, semantic tagging, and disease detec-

tion. However, they are only gray-scaled and thereby use the same color information redun-

dantly for all 3 color channels. In the notion of fusing information to achieve medical image

understanding, the MRI scans are enhanced after branding and prior to training the
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classification models. The evaluation results show that augmenting contrast intensified and

blurred image adaptions as two extra layers increases the model performance regarding classi-

fication and annotation between aMCI and controls.

It has to be kept in mind that we did not have any biomarker information that is specific for

hallmark AD proteinopathies like amyloid beta deposition or phosphorylated tau. Thus, we

cannot identify the underlying pathology in our aMCI cases.

In contrast to the ADNI data set the data in the HNR stem from a local cohort of German

nationality in three neighborhood cities in the Ruhr Area. As a consequence this study popula-

tion is rather homogenous both in cultural as in ethnic aspects. The HNR research group has

consistently experienced similar obervations also in other fields, like CVD prediction.

Due to the limited number of participants in the applied datasets, there are limitations to

the usage of standard end-to-end deep learning classification architecture. However to utilize

the benefits of deep learning systems and examine its capabilities, DeCAF are adopted for

visual representation. The evaluation metric rates on the independent test set show that taking

advantage of large trained deep learning models such as ImageNet as feature representation,

the aMCI vs control classification models are fed sufficient information and are capable of pre-

dicting clinical outcome.

Each 2D slice of an MRI contains information and dependencies about predecessor and

successor slice. LSTM models have the ability to accumulate information, thus feeding every

2nd slice of the MRI scans was not only time efficient but led to positive results. By adopting

an LSTM model over a 3D convolutional neural network, the computational time is reduced,

as convolutional operations for the 2D convolutional layers are done across the x and y dimen-

sion only. We could show that LSTM models are capable of classifying between aMCI and con-

trols using sociodemographic data and APOE-ε4, and deep convolutional activation features.

The Grad-CAM results showing the visual explanations of the applied LSTM model are on

first sight reasonable.

The presented approach can be applied to create computer-aided diagnosis systems for

aMCI vs cognitively unimpaired, as well as semantic structuring and tagging systems in practi-

cal clinical situations. Radiologists and neurologists can use the classifier output as ‘second

opinion’ in addition to peer discussions. Another application is to integrate the classifier out-

put for a built-in preselection filter after MRI scans are taken. Suspected aMCI cases can be

highlighted with this filter, hence reducing the number of images radiologists have to examine

and indicating when to comprehensively screen. As structured and annotated data is funda-

mental for effective Information Retrieval (IR) systems, the proposed method can be inte-

grated for the modeling and creation of IR systems. The classifier outputs are then adopted for

prior content tagging. Such IR systems can be used by early medical practioners to filter aMCI

vs cognitively impaired for learning purposes.

The findings of this proposed work require further evaluation on different functional neu-

roimaging techniques. For tackling the challenging medical task of early and preclinical detec-

tion of AD dementia, the fusion of various clinical data can be intensively experimented, as

there are numerous input sources in the medical domain.

Conclusion

This work presents an approach to combine sociodemographic data and APOE-ε4 with 1.5T

MRI scans to create optimized classification models to distinguish between aMCI and controls.

The fusion method enables an enriched image representation, as classification systems with

multi-modal image features have proven to obtain higher prediction accuracies. Information

fusion is obtained by encoding the values of the APOE-ε4 and sociodemographic data
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variables: gender, marital status, age and education as markers, and branding these on the

MRI scans, prior to training and prediction.

Two extra color layers denoting the contrast intensified and blurred image adaptions are

augmented to simulate RGB-channeled images, which aims to use the characteristic of deep

convolutional neural networks for color extraction as features for training. LSTM based RNNs

are modeled as aMCI vs control classification models, as each 2D slice of a MRI scan contains

dependencies between predecessor and successor slices. The output of the classification mod-

els are justified with visual explanations, denoting the important image regions used for deci-

sion making.

This works shows that fusing sociodemographic and genetic data from participants in a

sub-study from the HNR Study and the ADNI Phase 1 datasets with MRI scans obtains

enriched visual information that provides adequate representations, which is essential for cre-

ating effective automatic structuring systems, such as classification models, disease detection

and semantic tagging. This is observed for both visual feature input techniques: DeCAF repre-

sentations from ‘Branded’ images and ‘Wide and Deep’ image representation method.

Prospective modeling and evaluation of mild cognitive impairment classification systems

can be based on different multi-modal image representation, as positive results have been pre-

sented in recent approaches and in this work. The proposed work pursues the way of several

fusion techniques of features from different heterogeneous modalities in the medical domain

for computer-aided diagnosis applications and can be adapted o 3D deep learning approaches

by branding volume markers.
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sitivity C-Reactive Protein are Associated with Mild Cognitive Impairment and its Subtypes: Results of a

Population-Based Case-Control Study. Journal of Alzheimer’s disease: JAD. 2012; 28:503–14. https://

doi.org/10.3233/JAD-2011-111352 PMID: 22008268

48. Ihl R, Weyer G. Alzheimer’s Disease Assessment Scale (ADAS) Deutsche Bearbeitung; 1993.

49. Oswald WD, Fleischmann UM. Nürnberger Alters-Inventar (NAI). 1997;1.

50. Steffen Aschenbrenner KWL Oliver Tucha. Regensburger Wortflüssigkeitstest (RWT). 2000;1.

51. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cogni-

tive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alz-

heimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s &

Dementia: The Journal of the Alzheimer’s Association. 2011; 7(3):270–279. https://doi.org/10.1016/j.

jalz.2011.03.008

52. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment—

Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cogni-

tive Impairment. Journal of internal medicine. 2004; 256:240–6. https://doi.org/10.1111/j.1365-2796.

2004.01380.x PMID: 15324367

53. In: Hoffmeyer-Zlotnik JHP, Wolf C, editors. International Standard Classification of Education, ISCED

1997. Boston, MA: Springer US; 2003. p. 195–220.

54. DA W. Wechsler memory scale-revised. New York: Psychological Corporation. 1987.

55. 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s

Association. 2018; 14(3):367–429. https://doi.org/10.1016/j.jalz.2018.02.001 PMID: 32157811

56. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeit-

schrift für Medizinische Physik. 2019; 29(2):102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

PMID: 30553609

57. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Net-

works. In: Proceedings of the 25th International Conference on Neural Information Processing Systems

(NIPS) 2012- Volume 1, Lake Tahoe, USA, December 3-8, 2012. Curran Associates Inc.;. p. 1097–

1105.

58. Goodfellow I, Bengio Y, Courville A. Deep Learning. 1st ed. Adaptive computation and machine learn-

ing series. The MIT Press; 2016.

59. Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E. Malignancy Detection on Mammography

Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input

Enhancement. J Digital Imaging. 2017; 30(4):499–505. https://doi.org/10.1007/s10278-017-9993-2

PMID: 28656455

60. Pelka O, Nensa F, Friedrich CM. Annotation of enhanced radiographs for medical image retrieval with

deep convolutional neural networks. PLOS ONE. 2018; 13(11):1–18. https://doi.org/10.1371/journal.

pone.0206229 PMID: 30419028

61. Zuiderveld K. In: Heckbert PS, editor. Contrast Limited Adaptive Histogram Equalization. USA: Aca-

demic Press Professional, Inc.; 1994. p. 474–485.

62. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive Histogram Equal-

ization and Its Variations. Computer Vision, Graphics and Image Processing. 1987; 39(3):355–368.

https://doi.org/10.1016/S0734-189X(87)80186-X

63. Buades A, Coll B, Morel JM. A Non-Local Algorithm for Image Denoising. In: Proceedings of the 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Volume

2—Volume 02. CVPR’05. Washington, DC, USA: IEEE Computer Society; 2005. p. 60–65. Available

from: 10.1109/CVPR.2005.38.

64. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recog-

nition Challenge. International Journal of Computer Vision (IJCV). 2015; 115(3):211–252. https://doi.

org/10.1007/s11263-015-0816-y

65. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu,

USA, July 22-25, 2017; 2017. p. 2261–2269.

PLOS ONE MRI-based detection of amnestic mild cognitive impairment using sociodemographic data, APOE and deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0236868 September 25, 2020 23 / 24

https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.1212/WNL.0b013e3181cb3e25
http://www.ncbi.nlm.nih.gov/pubmed/20042704
https://doi.org/10.1159/000328262
http://www.ncbi.nlm.nih.gov/pubmed/21757960
https://doi.org/10.3233/JAD-2011-111352
https://doi.org/10.3233/JAD-2011-111352
http://www.ncbi.nlm.nih.gov/pubmed/22008268
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1111/j.1365-2796.2004.01380.x
https://doi.org/10.1111/j.1365-2796.2004.01380.x
http://www.ncbi.nlm.nih.gov/pubmed/15324367
https://doi.org/10.1016/j.jalz.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/32157811
https://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
https://doi.org/10.1007/s10278-017-9993-2
http://www.ncbi.nlm.nih.gov/pubmed/28656455
https://doi.org/10.1371/journal.pone.0206229
https://doi.org/10.1371/journal.pone.0206229
http://www.ncbi.nlm.nih.gov/pubmed/30419028
https://doi.org/10.1016/S0734-189X(87)80186-X
http://10.1109/CVPR.2005.38
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1371/journal.pone.0236868


66. Chollet F. Deep Learning with Python. 1st ed. Greenwich, CT, USA: Manning Publications Co.; 2017.

67. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9(8):1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

68. Ben Abacha A, Hasan SA, Datla VV, Liu J, Demner-Fushman D, Müller H. VQA-Med: Overview of the

Medical Visual Question Answering Task at ImageCLEF 2019. In: Working Notes of CLEF 2019—Con-

ference and Labs of the Evaluation Forum, Lugano, Switzerland, September 9-12, 2019.; 2019. Avail-

able from: http://ceur-ws.org/Vol-2380/paper_272.pdf.

69. Sutskever I, Vinyals O, Le QV. Sequence to Sequence Learning with Neural Networks. In: Proceedings

of the 27th International Conference on Neural Information Processing Systems—Volume 2. NIPS’14.

Cambridge, MA, USA: MIT Press; 2014. p. 3104–3112. Available from: http://dl.acm.org/citation.cfm?

id=2969033.2969173.

70. Pascanu R, Mikolov T, Bengio Y. On the Difficulty of Training Recurrent Neural Networks. In: Proceed-

ings of the 30th International Conference on International Conference on Machine Learning—Volume

28. ICML’13. JMLR.org; 2013. p. III–1310–III–1318. Available from: http://dl.acm.org/citation.cfm?id=

3042817.3043083.

71. Cheng HT, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, et al. Wide & Deep Learning for Rec-

ommender Systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Sys-

tems. DLRS 2016. New York, NY, USA: ACM; 2016. p. 7–10. Available from: http://doi.acm.org/10.

1145/2988450.2988454.

72. Parmanto B, Munro PW, Doyle HR. Improving committee diagnosis with resampling techniques. In:

Advances in Neural Information Processing Systems (NIPS) 1996, February 12—May 12, 1996, Den-

ver, USA;. p. 882–888.

73. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations

from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV) 2017, Venice, Italy, October 22- October 29, 2019.; 2017. p. 618–626.

PLOS ONE MRI-based detection of amnestic mild cognitive impairment using sociodemographic data, APOE and deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0236868 September 25, 2020 24 / 24

https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://ceur-ws.org/Vol-2380/paper_272.pdf
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://doi.acm.org/10.1145/2988450.2988454
http://doi.acm.org/10.1145/2988450.2988454
https://doi.org/10.1371/journal.pone.0236868

